Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 25(4): 2071-2096, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38565738

RESUMEN

Most mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria in a post-translational reaction. Mitochondrial precursor proteins which use the ER-SURF pathway employ the surface of the endoplasmic reticulum (ER) as an important sorting platform. How they reach the mitochondrial import machinery from the ER is not known. Here we show that mitochondrial contact sites play a crucial role in the ER-to-mitochondria transfer of precursor proteins. The ER mitochondria encounter structure (ERMES) and Tom70, together with Djp1 and Lam6, are part of two parallel and partially redundant ER-to-mitochondria delivery routes. When ER-to-mitochondria transfer is prevented by loss of these two contact sites, many precursors of mitochondrial inner membrane proteins are left stranded on the ER membrane, resulting in mitochondrial dysfunction. Our observations support an active role of the ER in mitochondrial protein biogenesis.


Asunto(s)
Mitocondrias , Proteínas de Saccharomyces cerevisiae , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transporte de Proteínas , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Cell Rep ; 43(4): 114018, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38551959

RESUMEN

Mitochondria consist of hundreds of proteins, most of which are inaccessible to the proteasomal quality control system of the cytosol. How cells stabilize the mitochondrial proteome during challenging conditions remains poorly understood. Here, we show that mitochondria form spatially defined protein aggregates as a stress-protecting mechanism. Two different types of intramitochondrial protein aggregates can be distinguished. The mitoribosomal protein Var1 (uS3m) undergoes a stress-induced transition from a soluble, chaperone-stabilized protein that is prevalent under benign conditions to an insoluble, aggregated form upon acute stress. The formation of Var1 bodies stabilizes mitochondrial proteostasis, presumably by sequestration of aggregation-prone proteins. The AAA chaperone Hsp78 is part of a second type of intramitochondrial aggregate that transiently sequesters proteins and promotes their folding or Pim1-mediated degradation. Thus, mitochondrial proteins actively control the formation of distinct types of intramitochondrial protein aggregates, which cooperate to stabilize the mitochondrial proteome during proteotoxic stress conditions.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , Agregado de Proteínas , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Estrés Fisiológico , Humanos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Chaperonas Moleculares/metabolismo , Proteostasis , Proteoma/metabolismo , Estrés Proteotóxico
3.
Nat Commun ; 15(1): 1797, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413589

RESUMEN

Activation of the replicative Mcm2-7 helicase by loading GINS and Cdc45 is crucial for replication origin firing, and as such for faithful genetic inheritance. Our biochemical and structural studies demonstrate that the helicase activator GINS interacts with TopBP1 through two separate binding surfaces, the first involving a stretch of highly conserved amino acids in the TopBP1-GINI region, the second a surface on TopBP1-BRCT4. The two surfaces bind to opposite ends of the A domain of the GINS subunit Psf1. Mutation analysis reveals that either surface is individually able to support TopBP1-GINS interaction, albeit with reduced affinity. Consistently, either surface is sufficient for replication origin firing in Xenopus egg extracts and becomes essential in the absence of the other. The TopBP1-GINS interaction appears sterically incompatible with simultaneous binding of DNA polymerase epsilon (Polε) to GINS when bound to Mcm2-7-Cdc45, although TopBP1-BRCT4 and the Polε subunit PolE2 show only partial competitivity in binding to Psf1. Our TopBP1-GINS model improves the understanding of the recently characterised metazoan pre-loading complex. It further predicts the coordination of three molecular origin firing processes, DNA polymerase epsilon arrival, TopBP1 ejection and GINS integration into Mcm2-7-Cdc45.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa II/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Replicación Viral
4.
J Cell Biol ; 222(10)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37682539

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) expresses high amounts of the protein Orf9b to target the mitochondrial outer membrane protein Tom70. Tom70 serves as an import receptor for mitochondrial precursors and, independently of this function, is critical for the cellular antiviral response. Previous studies suggested that Orf9b interferes with Tom70-mediated antiviral signaling, but its implication for mitochondrial biogenesis is unknown. In this study, we expressed Orf9b in human HEK293 cells and observed an Orf9b-mediated depletion of mitochondrial proteins, particularly in respiring cells. To exclude that the observed depletion was caused by the antiviral response, we generated a yeast system in which the function of human Tom70 could be recapitulated. Upon expression of Orf9b in these cells, we again observed a specific decline of a subset of mitochondrial proteins and a general reduction of mitochondrial volume. Thus, the SARS-CoV-2 virus is able to modulate the mitochondrial proteome by a direct effect of Orf9b on mitochondrial Tom70-dependent protein import.


Asunto(s)
COVID-19 , Proteínas de la Nucleocápside de Coronavirus , Proteínas de Transporte de Membrana Mitocondrial , SARS-CoV-2 , Humanos , Proteínas de la Nucleocápside de Coronavirus/genética , COVID-19/genética , Células HEK293 , Proteínas de la Membrana , Proteínas de Transporte de Membrana Mitocondrial/genética , Saccharomyces cerevisiae
5.
Microlife ; 4: uqad028, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441524

RESUMEN

Studies of protein-protein interactions in membranes are very important to fully understand the biological function of a cell. The extraction of proteins from the native membrane environment is a critical step in the preparation of membrane proteins that might affect the stability of protein complexes. In this work, we used the amphiphilic diisobutylene/maleic acid copolymer to extract the membrane proteome of the opportunistic pathogen Pseudomonas aeruginosa, thereby creating a soluble membrane-protein library within a native-like lipid-bilayer environment. Size fractionation of nanodisc-embedded proteins and subsequent mass spectrometry enabled the identification of 3358 proteins. The native membrane-protein library showed a very good overall coverage compared to previous proteome data. The pattern of size fractionation indicated that protein complexes were preserved in the library. More than 20 previously described complexes, e.g. the SecYEG and Pili complexes, were identified and analyzed for coelution. Although the mass-spectrometric dataset alone did not reveal new protein complexes, combining pulldown assays with mass spectrometry was successful in identifying new protein interactions in the native membrane-protein library. Thus, we identified several candidate proteins for interactions with the membrane phosphodiesterase NbdA, a member of the c-di-GMP network. We confirmed the candidate proteins CzcR, PA4200, SadC, and PilB as novel interaction partners of NbdA using the bacterial adenylate cyclase two-hybrid assay. Taken together, this work demonstrates the usefulness of the native membrane-protein library of P. aeruginosa for the investigation of protein interactions and membrane-protein complexes. Data are available via ProteomeXchange with identifiers PXD039702 and PXD039700.

6.
EMBO J ; 42(7): e112309, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36704946

RESUMEN

Hundreds of nucleus-encoded mitochondrial precursor proteins are synthesized in the cytosol and imported into mitochondria in a post-translational manner. However, the early processes associated with mitochondrial protein targeting remain poorly understood. Here, we show that in Saccharomyces cerevisiae, the cytosol has the capacity to transiently store mitochondrial matrix-destined precursors in dedicated deposits that we termed MitoStores. Competitive inhibition of mitochondrial protein import via clogging of import sites greatly enhances the formation of MitoStores, but they also form during physiological cell growth on nonfermentable carbon sources. MitoStores are enriched for a specific subset of nucleus-encoded mitochondrial proteins, in particular those containing N-terminal mitochondrial targeting sequences. Our results suggest that MitoStore formation suppresses the toxic potential of aberrantly accumulating mitochondrial precursor proteins and is controlled by the heat shock proteins Hsp42 and Hsp104. Thus, the cytosolic protein quality control system plays an active role during the early stages of mitochondrial protein targeting through the coordinated and localized sequestration of mitochondrial precursor proteins.


Asunto(s)
Chaperonas Moleculares , Proteínas de Saccharomyces cerevisiae , Citosol/metabolismo , Chaperonas Moleculares/metabolismo , Mitocondrias/metabolismo , Proteínas de Choque Térmico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Life Sci Alliance ; 6(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36253107

RESUMEN

Mitochondria play a key role in cellular energy metabolism. Transitions between glycolytic and respiratory conditions induce considerable adaptations of the cellular proteome. These metabolism-dependent changes are particularly pronounced for the protein composition of mitochondria. Here, we show that the yeast cytosolic ubiquitin conjugase Ubc8 plays a crucial role in the remodeling process when cells transition from respiratory to fermentative conditions. Ubc8 is a conserved and well-studied component of the catabolite control system that is known to regulate the stability of gluconeogenic enzymes. Unexpectedly, we found that Ubc8 also promotes the assembly of the translocase of the outer membrane of mitochondria (TOM) and increases the levels of its cytosol-exposed receptor subunit Tom22. Ubc8 deficiency results in compromised protein import into mitochondria and reduced steady-state levels of mitochondrial proteins. Our observations show that Ubc8, which is controlled by the prevailing metabolic conditions, promotes the switch from glucose synthesis to glucose usage in the cytosol and induces the biogenesis of the mitochondrial TOM machinery to improve mitochondrial protein import during phases of metabolic transition.


Asunto(s)
Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae , Enzimas Ubiquitina-Conjugadoras , gamma-Glutamil Hidrolasa/metabolismo , Glucosa/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
8.
Small ; 18(47): e2202492, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36228092

RESUMEN

Membrane proteins can be examined in near-native lipid-bilayer environments with the advent of polymer-encapsulated nanodiscs. These nanodiscs self-assemble directly from cellular membranes, allowing in vitro probing of membrane proteins with techniques that have previously been restricted to soluble or detergent-solubilized proteins. Often, however, the high charge densities of existing polymers obstruct bioanalytical and preparative techniques. Thus, the authors aim to fabricate electroneutral-yet water-soluble-polymer nanodiscs. By attaching a sulfobetaine group to the commercial polymers DIBMA and SMA(2:1), these polyanionic polymers are converted to the electroneutral maleimide derivatives, Sulfo-DIBMA and Sulfo-SMA(2:1). Sulfo-DIBMA and Sulfo-SMA(2:1) readily extract proteins and phospholipids from artificial and cellular membranes to form nanodiscs. Crucially, the electroneutral nanodiscs avert unspecific interactions, thereby enabling new insights into protein-lipid interactions through lab-on-a-chip detection and in vitro translation of membrane proteins. Finally, the authors create a library comprising thousands of human membrane proteins and use proteome profiling by mass spectrometry to show that protein complexes are preserved in electroneutral nanodiscs.


Asunto(s)
Membrana Dobles de Lípidos , Nanoestructuras , Humanos , Membrana Dobles de Lípidos/química , Polímeros/química , Maleatos/química , Proteínas de la Membrana/química , Nanoestructuras/química
9.
Hum Mol Genet ; 31(13): 2185-2193, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35099000

RESUMEN

Bloom syndrome (BS) is an autosomal recessive disease clinically characterized by primary microcephaly, growth deficiency, immunodeficiency and predisposition to cancer. It is mainly caused by biallelic loss-of-function mutations in the BLM gene, which encodes the BLM helicase, acting in DNA replication and repair processes. Here, we describe the gene expression profiles of three BS fibroblast cell lines harboring causative, biallelic truncating mutations obtained by single-cell (sc) transcriptome analysis. We compared the scRNA transcription profiles from three BS patient cell lines to two age-matched wild-type controls and observed specific deregulation of gene sets related to the molecular processes characteristically affected in BS, such as mitosis, chromosome segregation, cell cycle regulation and genomic instability. We also found specific upregulation of genes of the Fanconi anemia pathway, in particular FANCM, FANCD2 and FANCI, which encode known interaction partners of BLM. The significant deregulation of genes associated with inherited forms of primary microcephaly observed in our study might explain in part the molecular pathogenesis of microcephaly in BS, one of the main clinical characteristics in patients. Finally, our data provide first evidence of a novel link between BLM dysfunction and transcriptional changes in condensin complex I and II genes. Overall, our study provides novel insights into gene expression profiles in BS on an sc level, linking specific genes and pathways to BLM dysfunction.


Asunto(s)
Síndrome de Bloom , Microcefalia , Adenosina Trifosfatasas , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , ADN Helicasas , Proteínas de Unión al ADN/genética , Humanos , Complejos Multiproteicos , RecQ Helicasas/genética , RecQ Helicasas/metabolismo
10.
Plant Cell ; 34(3): 1075-1099, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34958373

RESUMEN

Photosynthesis is a central determinant of plant biomass production, but its homeostasis is increasingly challenged by heat. Little is known about the sensitive regulatory principles involved in heat acclimation that underly the biogenesis and repair of chloroplast-encoded core subunits of photosynthetic complexes. Employing time-resolved ribosome and transcript profiling together with selective ribosome proteomics, we systematically deciphered these processes in chloroplasts of Chlamydomonas reinhardtii. We revealed protein biosynthesis and altered translation elongation as central processes for heat acclimation and showed that these principles are conserved between the alga and the flowering plant Nicotiana tabacum. Short-term heat exposure resulted in specific translational repression of chlorophyll a-containing core antenna proteins of photosystems I and II. Furthermore, translocation of ribosome nascent chain complexes to thylakoid membranes was affected, as reflected by the increased accumulation of stromal cpSRP54-bound ribosomes. The successful recovery of synthesizing these proteins under prolonged acclimation of nonlethal heat conditions was associated with specific changes of the co-translational protein interaction network, including increased ribosome association of chlorophyll biogenesis enzymes and acclimation factors responsible for complex assembly. We hypothesize that co-translational cofactor binding and targeting might be bottlenecks under heat but become optimized upon heat acclimation to sustain correct co-translational protein complex assembly.


Asunto(s)
Calor , Biosíntesis de Proteínas , Aclimatación , Clorofila A/metabolismo , Cloroplastos/metabolismo , Fotosíntesis/genética , Complejo de Proteína del Fotosistema I/metabolismo
11.
Cancer Res Commun ; 2(5): 366-379, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-36875714

RESUMEN

The acquisition of cell invasiveness is the key transition from benign melanocyte hyperplasia to aggressive melanoma. Recent work has provided an intriguing new link between the presence of supernumerary centrosomes and increased cell invasion. Moreover, supernumerary centrosomes were shown to drive non-cell-autonomous invasion of cancer cells. Although centrosomes are the principal microtubule organizing centers, the role of dynamic microtubules for non-cell-autonomous invasion remains unexplored, in particular, in melanoma. We investigated the role of supernumerary centrosomes and dynamic microtubules in melanoma cell invasion and found that highly invasive melanoma cells are characterized by the presence of supernumerary centrosomes and by increased microtubule growth rates, both of which are functionally interlinked. We demonstrate that enhanced microtubule growth is required for increased three-dimensional melanoma cell invasion. Moreover, we show that the activity to enhance microtubule growth can be transferred onto adjacent noninvasive cells through microvesicles involving HER2. Hence, our study suggests that suppressing microtubule growth, either directly using anti-microtubule drugs or through HER2 inhibitors might be therapeutically beneficial to inhibit cell invasiveness and thus, metastasis of malignant melanoma. Significance: This study shows that increased microtubule growth is required for melanoma cell invasion and can be transferred onto adjacent cells in a non-cell-autonomous manner through microvesicles involving HER2.


Asunto(s)
Melanoma , Comunicación Paracrina , Humanos , Microtúbulos , Centrosoma , Invasividad Neoplásica , Melanoma Cutáneo Maligno
12.
DNA Repair (Amst) ; 107: 103207, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34425515

RESUMEN

Sequencing of cancer genomes revealed a rich landscape of somatic single nucleotide variants, structural changes of chromosomes, as well as chromosomal copy number alterations. These chromosome changes are highly variable, and simple translocations, deletions or duplications have been identified, as well as complex events that likely arise through activity of several interconnected processes. Comparison of the cancer genome sequencing data with our knowledge about processes important for maintenance of genome stability, namely DNA replication, repair and chromosome segregation, provides insights into the mechanisms that may give rise to complex chromosomal patterns, such as chromothripsis, a complex form of multiple focal chromosome rearrangements. In addition, observations gained from model systems that recapitulate the rearrangements patterns under defined experimental conditions suggest that mitotic errors and defective DNA replication and repair contribute to their formation. Here, we review the molecular mechanisms that contribute to formation of chromosomal aberrations observed in cancer genomes.


Asunto(s)
Aberraciones Cromosómicas
13.
EMBO J ; 40(15): e107807, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34191293

RESUMEN

Eukaryotic cells employ three SMC (structural maintenance of chromosomes) complexes to control DNA folding and topology. The Smc5/6 complex plays roles in DNA repair and in preventing the accumulation of deleterious DNA junctions. To elucidate how specific features of Smc5/6 govern these functions, we reconstituted the yeast holo-complex. We found that the Nse5/6 sub-complex strongly inhibited the Smc5/6 ATPase by preventing productive ATP binding. This inhibition was relieved by plasmid DNA binding but not by short linear DNA, while opposing effects were observed without Nse5/6. We uncovered two binding sites for Nse5/6 on Smc5/6, based on an Nse5/6 crystal structure and cross-linking mass spectrometry data. One binding site is located at the Smc5/6 arms and one at the heads, the latter likely exerting inhibitory effects on ATP hydrolysis. Cysteine cross-linking demonstrated that the interaction with Nse5/6 anchored the ATPase domains in a non-productive state, which was destabilized by ATP and DNA. Under similar conditions, the Nse4/3/1 module detached from the ATPase. Altogether, we show how DNA substrate selection is modulated by direct inhibition of the Smc5/6 ATPase by Nse5/6.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Microscopía por Crioelectrón , Cristalografía por Rayos X , ADN de Hongos/metabolismo , Hidrólisis , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Conformación Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
14.
Cell Rep ; 35(1): 108936, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33826901

RESUMEN

Most mitochondrial proteins are synthesized as precursors in the cytosol and post-translationally transported into mitochondria. The mitochondrial surface protein Tom70 acts at the interface of the cytosol and mitochondria. In vitro import experiments identified Tom70 as targeting receptor, particularly for hydrophobic carriers. Using in vivo methods and high-content screens, we revisit the question of Tom70 function and considerably expand the set of Tom70-dependent mitochondrial proteins. We demonstrate that the crucial activity of Tom70 is its ability to recruit cytosolic chaperones to the outer membrane. Indeed, tethering an unrelated chaperone-binding domain onto the mitochondrial surface complements most of the defects caused by Tom70 deletion. Tom70-mediated chaperone recruitment reduces the proteotoxicity of mitochondrial precursor proteins, particularly of hydrophobic inner membrane proteins. Thus, our work suggests that the predominant function of Tom70 is to tether cytosolic chaperones to the outer mitochondrial membrane, rather than to serve as a mitochondrion-specifying targeting receptor.


Asunto(s)
Citosol/metabolismo , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Proteínas de la Membrana/metabolismo , Agregado de Proteínas , Unión Proteica
15.
Mol Biol Cell ; 32(8): 664-674, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33596095

RESUMEN

For the biogenesis of mitochondria, hundreds of proteins need to be targeted from the cytosol into the various compartments of this organelle. The intramitochondrial targeting routes these proteins take to reach their respective location in the organelle are well understood. However, the early targeting processes, from cytosolic ribosomes to the membrane of the organelle, are still largely unknown. In this study, we present evidence that an integral membrane protein of the endoplasmic reticulum (ER), Ema19, plays a role in this process. Mutants lacking Ema19 show an increased stability of mitochondrial precursor proteins, indicating that Ema19 promotes the proteolytic degradation of nonproductive precursors. The deletion of Ema19 improves the growth of respiration-deficient cells, suggesting that Ema19-mediated degradation can compete with productive protein import into mitochondria. Ema19 is the yeast representative of a conserved protein family. The human Ema19 homologue is known as sigma 2 receptor or TMEM97. Though its molecular function is not known, previous studies suggested a role of the sigma 2 receptor as a quality control factor in the ER, compatible with our observations about Ema19. More globally, our data provide an additional demonstration of the important role of the ER in mitochondrial protein targeting.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Proteolisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Nucleic Acids Res ; 49(1): 400-415, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33330923

RESUMEN

In plant cells, chloroplast gene expression is predominantly controlled through post-transcriptional regulation. Such fine-tuning is vital for precisely orchestrating protein complex assembly as for the photosynthesis machinery and for quickly responding to environmental changes. While regulation of chloroplast protein synthesis is of central importance, little is known about the degree and nature of the regulatory network, mainly due to challenges associated with the specific isolation of transient ribosome interactors. Here, we established a ribosome affinity purification method, which enabled us to broadly uncover putative ribosome-associated proteins in chloroplasts. Endogenously tagging of a protein of the large or small subunit revealed not only interactors of the holo complex, but also preferential interactors of the two subunits. This includes known canonical regulatory proteins as well as several new proteins belonging to the categories of protein and RNA regulation, photosystem biogenesis, redox control and metabolism. The sensitivity of the here applied screen was validated for various transiently interacting proteins. We further provided evidence for the existence of a ribosome-associated Nα-acetyltransferase in chloroplasts and its ability to acetylate substrate proteins at their N-terminus. The broad set of ribosome interactors underscores the potential to regulate chloroplast gene expression on the level of protein synthesis.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Ribosomas/metabolismo , Espectrometría de Masas en Tándem/métodos , Acetilación , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Fraccionamiento Celular/métodos , Chlamydomonas reinhardtii/genética , Regulación de la Expresión Génica de las Plantas , Separación Inmunomagnética , Espectrometría de Masas , Modelos Moleculares , Acetiltransferasas N-Terminal/aislamiento & purificación , Acetiltransferasas N-Terminal/metabolismo , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Subunidades Ribosómicas Grandes/metabolismo , Subunidades Ribosómicas Pequeñas/metabolismo
17.
Mol Cell ; 81(3): 442-458.e9, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33321094

RESUMEN

Lesions on DNA uncouple DNA synthesis from the replisome, generating stretches of unreplicated single-stranded DNA (ssDNA) behind the replication fork. These ssDNA gaps need to be filled in to complete DNA duplication. Gap-filling synthesis involves either translesion DNA synthesis (TLS) or template switching (TS). Controlling these processes, ubiquitylated PCNA recruits many proteins that dictate pathway choice, but the enzymes regulating PCNA ubiquitylation in vertebrates remain poorly defined. Here we report that the E3 ubiquitin ligase RFWD3 promotes ubiquitylation of proteins on ssDNA. The absence of RFWD3 leads to a profound defect in recruitment of key repair and signaling factors to damaged chromatin. As a result, PCNA ubiquitylation is inhibited without RFWD3, and TLS across different DNA lesions is drastically impaired. We propose that RFWD3 is an essential coordinator of the response to ssDNA gaps, where it promotes ubiquitylation to drive recruitment of effectors of PCNA ubiquitylation and DNA damage bypass.


Asunto(s)
Cromatina/metabolismo , Roturas del ADN de Cadena Simple , Reparación del ADN , Replicación del ADN , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular Tumoral , Cromatina/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Femenino , Humanos , Antígeno Nuclear de Célula en Proliferación/genética , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Xenopus laevis
18.
J Biol Chem ; 295(43): 14686-14697, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32826315

RESUMEN

The biogenesis of mitochondria requires the import of hundreds of precursor proteins. These proteins are transported post-translationally with the help of chaperones, meaning that the overproduction of mitochondrial proteins or the limited availability of chaperones can lead to the accumulation of cytosolic precursor proteins. This imposes a severe challenge to cytosolic proteostasis and triggers a specific transcription program called the mitoprotein-induced stress response, which activates the proteasome system. This coincides with the repression of mitochondrial proteins, including many proteins of the intermembrane space. In contrast, herein we report that the so-far-uncharacterized intermembrane space protein Mix23 is considerably up-regulated when mitochondrial import is perturbed. Mix23 is evolutionarily conserved and a homolog of the human protein CCDC58. We found that, like the subunits of the proteasome, Mix23 is under control of the transcription factor Rpn4. It is imported into mitochondria by the mitochondrial disulfide relay. Mix23 is critical for the efficient import of proteins into the mitochondrial matrix, particularly if the function of the translocase of the inner membrane 23 is compromised such as in temperature-sensitive mutants of Tim17. Our observations identify Mix23 as a novel regulator or stabilizer of the mitochondrial protein import machinery that is specifically up-regulated upon mitoprotein-induced stress conditions.


Asunto(s)
Saccharomyces cerevisiae/metabolismo , Regulación Fúngica de la Expresión Génica , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Proteostasis , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Estrés Fisiológico , Regulación hacia Arriba
19.
Mol Cell ; 73(3): 574-588.e7, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30595436

RESUMEN

DNA-protein crosslinks (DPCs) are bulky lesions that interfere with DNA metabolism and therefore threaten genomic integrity. Recent studies implicate the metalloprotease SPRTN in S phase removal of DPCs, but how SPRTN is targeted to DPCs during DNA replication is unknown. Using Xenopus egg extracts that recapitulate replication-coupled DPC proteolysis, we show that DPCs can be degraded by SPRTN or the proteasome, which act as independent DPC proteases. Proteasome recruitment requires DPC polyubiquitylation, which is partially dependent on the ubiquitin ligase activity of TRAIP. In contrast, SPRTN-mediated DPC degradation does not require DPC polyubiquitylation but instead depends on nascent strand extension to within a few nucleotides of the lesion, implying that polymerase stalling at the DPC activates SPRTN on both leading and lagging strand templates. Our results demonstrate that SPRTN and proteasome activities are coupled to DNA replication by distinct mechanisms that promote replication across immovable protein barriers.


Asunto(s)
Reparación del ADN , Replicación del ADN , ADN/biosíntesis , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , ADN/química , ADN/genética , Femenino , Masculino , Conformación de Ácido Nucleico , Complejo de la Endopetidasa Proteasomal/genética , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Células Sf9 , Relación Estructura-Actividad , Ubiquitinación , Proteínas de Xenopus/genética , Xenopus laevis/genética
20.
Cell ; 176(1-2): 167-181.e21, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30595447

RESUMEN

Covalent DNA-protein cross-links (DPCs) impede replication fork progression and threaten genome integrity. Using Xenopus egg extracts, we previously showed that replication fork collision with DPCs causes their proteolysis, followed by translesion DNA synthesis. We show here that when DPC proteolysis is blocked, the replicative DNA helicase CMG (CDC45, MCM2-7, GINS), which travels on the leading strand template, bypasses an intact leading strand DPC. Single-molecule imaging reveals that GINS does not dissociate from CMG during bypass and that CMG slows dramatically after bypass, likely due to uncoupling from the stalled leading strand. The DNA helicase RTEL1 facilitates bypass, apparently by generating single-stranded DNA beyond the DPC. The absence of RTEL1 impairs DPC proteolysis, suggesting that CMG must bypass the DPC to enable proteolysis. Our results suggest a mechanism that prevents inadvertent CMG destruction by DPC proteases, and they reveal CMG's remarkable capacity to overcome obstacles on its translocation strand.


Asunto(s)
ADN Helicasas/metabolismo , ADN Helicasas/fisiología , Reparación del ADN/fisiología , Animales , Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , Replicación del ADN , ADN de Cadena Simple , Proteínas de Unión al ADN/fisiología , Femenino , Masculino , Proteolisis , Imagen Individual de Molécula/métodos , Xenopus laevis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...